Wednesday, 29 January 2014

Importing rasters into Python

I have been prompted to post a little piece on importing rasters into Python using GDAL.
The following code is something I use personally and may not be suited to everyones needs but it should be easy to adapt it.

def rasterImport(file):
    '''Import a raster file and return grid plus meta data. Returns three objects: data, meta, metadata '''
    # Tell the user that the function is working
    print '\nImporting ',file
    # Register all of the GDAL drivers
    gdal.AllRegister()
    # Open the file
    raster = gdal.Open(file)
    if raster is None:
        print 'Could not open ',file,'\n'
        sys.exit(1)
    # Get coordinate system and affine transformation parameters
    projec = raster.GetProjection()
    srs = osr.SpatialReference(wkt=projec)
    transf = raster.GetGeoTransform()
    # Get meta data
    # Get short name and then long name of driver
    driveshrt = raster.GetDriver().ShortName
    driver = gdal.GetDriverByName(driveshrt)
    metadata = driver.GetMetadata()
    metakeys = metadata.keys()
    # Read the file band to a 'matrix' called band
    band = raster.GetRasterBand(1)
    # Access data in rastern band as array
    data = band.ReadAsArray(0,0,cols,rows)
    # gdal_grid creates "upside down" files, hence this
    Yres=yres
    if Yres/np.fabs(Yres)==-1:
        Yres=-1*Yres
        data = np.flipud(data)
    # From here you can 'return' the data to the main routine
    # and skip the rest of this.
    #
    # Get the upper left coordinates and the pixel resolution
    ul_x = transf[0]
    ul_y = transf[3]
    xres = transf[1]
    yres = transf[5]
    # Get image size
    rows = raster.RasterYSize
    cols = raster.RasterXSize
    dims = {'xres':xres,'yres':yres,'rows':rows,'cols':cols}
    # Calculate all corners
    ll_x = ul_x
    ll_y = ul_y + (rows * yres)
    ur_x = ul_x + (cols * xres)
    ur_y = ul_y
    lr_x = ur_x
    lr_y = ll_y
    # Make dictionary of corners
    corners = {'ll':(ll_x,ll_y),'ul':(ul_x,ul_y),'ur':(ur_x,ur_y),'lr':(lr_x,lr_y)}
    # Get nodata value
    nandat = band.GetNoDataValue()
    # Get minimum and maximum value
    mindat = band.GetMinimum()
    maxdat = band.GetMaximum()
    # If the stats aren't available yet calculate the min-max
    if mindat is None or maxdat is None:
            (mindat,maxdat) = band.ComputeRasterMinMax(1)
    dats = [nandat,mindat,maxdat]
    # This next bit sums the values for a volume calculation
    sumvals = data[np.where(np.logical_not(data == nandat))]
    sumval = sumvals.sum()
    numvals = len(sumvals)
    avval = sumval/numvals
    volvals = sumval*(math.fabs((transf[1]*transf[5])))
    # Organise the metadata for export
    meta = {'transform':transf,'corners':corners,'dimension':dims,'dats':dats,'sumval':sumval,'numvals':numvals,'avval':avval,'volvals':volvals}
    # Tell user about the file
    if srs.IsProjected:
        print 'projcs 1: ',srs.GetAttrValue('projcs')
        print 'projcs 2: ',srs.GetAuthorityCode('projcs')
        print 'projcs 3: ',srs.GetAuthorityName('projcs')
    print 'geogcs 1:: ',srs.GetAttrValue('geogcs')
    print 'Sum of pixel values = ',sumval,' in range ',mindat,' to ',maxdat
    print 'From ',numvals,' of ',rows,' X ',cols,' = ',rows*cols,' pixels, or ',((1.0*numvals)/(rows*cols))*100,'%'
    print 'Average then is ',avval
    print 'Pixels size, x:',transf[1],' y:',transf[5]
    print '"Volume" is then the sum * 1 pixel area: ',volvals
    # Return the data matrix plus metadata to main routine
    return data, meta, metadata

That's it. Not the greatest, most efficient code but it does what I want.

No comments:

Post a Comment